HO WAI CHIN (MATTHEW H. W. CHIN)

EDUCATION

University College London (UCL)

May, 2020

PhD, Biomedical Engineering

- Thesis: *Designing platforms to biophysically regulate T cell activation.*
- Funding source: UK Biotechnology and Biological Sciences Research Council (BBSRC) via a London Interdisciplinary Biosciences Consortium studentship.
- Conceptualized the PhD project to study the influence of substrate stiffness on T cell activation in the context of cancer immunotherapy.
- Primary supervisor: Prof. Richard Day (UCL Medicine); Secondary supervisor: Prof. Marc-Olivier Coppens (UCL Chemical Engineering); Tertiary supervisor: Prof. Eileen Gentleman (King's College London).

Imperial College London

MSc & DIC, Biomedical Engineering

- MSc dissertation: *Modulating human PARP-1 activity with allosteric DNA aptamers* (Supervisor: Dr. Sylvain Ladame, Department of Bioengineering).
- Used enzyme activity assays (chemiluminescence- and fluorescence-based) to perform dose-response screening of aptamers.

August, 2013

November, 2014

Imperial College London

BEng & ACGI, Biomedical Engineering

- Final year individual project: *Design of a microfluidic circuit board for the analysis of human microdialysis streams* (Supervisor: Prof. Martyn Boutelle, Department of Bioengineering).
- Group project: *Arrow-positioning haptic feedback system for visually impaired archers* | My role: wrote the code for an Arduino-controlled X-Y table.

RESEARCH EXPERIENCE

University College London

09/01/2020-present

Postdoctoral Research Fellow, Centre for Nature Inspired Engineering | Supervisor: Prof. Marc-Olivier Coppens

- Member of the "NexTGen" team an international collaboration across 8 institutions (US, UK, and France) funded by Cancer Research UK, National Cancer Institute and The Mark Foundation for Cancer Research via the \$25M Cancer Grand Challenges partnership.
- Initiated a new line of research integrating algorithmic design, graph theory, and 3D microprinting to create geometrically complex, biologically inspired cell scaffolds.
- Developed a generative algorithm to create 3D models that emulate the spatial network organization of lymphoid fibroblasts.
- Proposed and currently developing 3D microprinted scaffolds that recapitulate the extracellular matrix of the tumor microenvironment, as part of NexTGen's modeling work.
- Led the earlier project "The immune "mind": bioelectrical and structural networks in decision-making" (2020-2022), which investigated how immune cells "compute" decisions in 3D printed scaffolds and established computational design framework later adopted by NexTGen.

Cupris Ltd. (London, UK)

08/03/2017-10/27/2017

Programming Intern

- Cupris is a start-up specializing in remote examination of patients using smartphone connected medical devices.
- Created an iOS application for smartphone otoscopy with machine learningenabled image recognition of eardrum conditions.

University College London

11/01/2014-08/01/2015

Research Assistant, Department of Chemistry

• DNA nanopore characterization (gel electrophoresis, single-channel current recording); Supervisor: Dr. Stefan Howorka.

Imperial College London

07/01/2013-11/04/2013

iGEM Team Member, Centre for Synthetic Biology

- Project: *Plasticity* | Built a synthetic biology-powered waste recycling platform.
- My role: developed a computational model to identify metabolic bottlenecks of biopolymer synthesis in the team's engineered *E. coli*.
- Results from the model led to the design of an award-winning BioBrick, which enhanced biopolymer yield.

Imperial College London

07/02/2012-08/14/2012

Undergraduate Research Assistant, Centre for Bio-Inspired Technology

• Involved in developing a printed circuit board for bioimpedance-based monitoring of internal bleeding in pregnant women, under the supervision of Dr. Nir Grossman.

TEACHING EXPERIENCE

University College London

09/01/2020-present

Guest Lecturer and Lab Demonstrator, Centre for Nature Inspired Engineering

- MEng module: Nature Inspired Chemical Engineering (CENG0029)
- MSc module: Nature Inspired Solutions (CENG0080)

University of Greenwich

01/17/2022-08/31/2022

Lecturer (fixed term), School of Engineering

- MSc module: Biochemical Engineering (CHEE1011)
- Developed the whole syllabus from scratch (incl. exam papers and coursework), taught 2 h/week for 11 weeks, marking.

The Bartlett School of Architecture, University College London Invited Guest Critic

03/25/2021

• Provided critique and engaged in discussions for Bio-Integrated Design MArch/MSc Year 1 Final Projects (BARC0125).

HONORS AND AWARDS

Competition:

- 1. 3rd in the World (out of 215 university teams); iGEM World Championship, Massachusetts Institute of Technology, USA (2013).
- 2. Best Manufacturing Project; iGEM World Championship, Massachusetts Institute of Technology, USA (2013).
- 3. 2nd Runner-Up; iGEM European Final, INSA Lyon, France (2013).
- 4. Best New BioBrick Part (Registry #: BBa_K1149051); iGEM European Final, INSA Lyon, France (2013).
- 5. Gold medal; iGEM European Final, INSA Lyon, France (2013).
- 6. Best Year 2 Engineering Design Project; Imperial College London Department of Bioengineering (2012).

Conference/Workshop Awards:

- 1. Best Poster Presentation; UCL CNIE Workshop (2020).
- 2. Best Poster Presentation: UCL Soft Materials Network Workshop (2018).
- 3. Best Poster Presentation; UCL CNIE Workshop (2018).
- 4. 1st Prize, Research Poster Presentation ("Biological Engineering" category); ChemEngDayUK (2017).

PhD Studentship:

1. BBSRC studentship from the London Interdisciplinary Biosciences Consortium doctoral training partnership (2015-2019).

PERSONAL DEVELOPMENT AND COMPETENCES

- 1. Learn ARKit with Swift (Augmented Reality) Nanodegree, Udacity (2017).
- 2. Artificial Intelligence Nanodegree, Udacity (2017).
- 3. Advanced Quantitative Skills for Bioscience, SysMIC (2016).
- 4. Maths and Computational Skills for Bioscience, SysMIC (2016) | Project completed with distinction.

PUBLICATIONS

Peer-reviewed journal articles:

- 1. Todd, L., **Chin, M. H. W.** & Coppens, M.-O. Two conjectures on 3D Voronoi structures: a toolkit with biomedical case studies. Molecular Systems Design & Engineering 9, 912-919. http://dx.doi.org/10.1039/D4ME00036F (2024).
- 2. Chin, M. H. W., Reid, B., Lachina, V., Acton, S. E. & Coppens, M.-O. Bioinspired 3D microprinted cell scaffolds: Integration of graph theory to recapitulate complex network wiring in lymph nodes. Biotechnology Journal 19, 2300359. https://doi.org/10.1002/biot.202300359 (2023). | Recognized as Biotechnology Journal's "Top Viewed Article", which ranked within the top 10% of most-viewed papers published by the journal in 2023.
- 3. **Chin, M. H. W.**, Linke, J. & Coppens, M.-O. Nature-inspired sustainable medical materials. Current Opinion in Biomedical Engineering 28, 100499. issn: 2468-4511. https://doi.org/10.1016/j.cobme.2023.100499 (2023).
- 4. **Chin, M. H. W.**, Norman, M. D. A., Gentleman, E., Coppens, M.-O. & Day, R. M. A Hydrogel-Integrated Culture Device to Interrogate T Cell Activation with Physicochemical Cues. ACS Applied Materials & Interfaces 12, 47355–47367. https://doi.org/10.1021/acsami.0c16478 (2020).
- 5. **Chin, M. H. W.***, Gentleman, E., Coppens, M.-O. & Day, R. M. Rethinking Cancer Immunotherapy by Embracing and Engineering Complexity. Trends in Biotechnology 38. Special Issue: Therapeutic Biomanufacturing, 1054–1065. issn: 0167-7799. https://doi.org/10.1016/j.tibtech.2020.05.003 (2020). | *Corresponding author.
- 6. Kelwick, R., Kopniczky, M., Bower, I., Chi, W., **Chin, M. H. W.**, Fan, S., Pilcher, J., Strutt, J., Webb, A. J., Jensen, K., Stan, G.-B., Kitney, R. & Freemont, P. A Forward-Design Approach to Increase the Production of Poly-3-Hydroxybutyrate in Genetically Engineered *Escherichia coli*. PLOS ONE 10, 1–11. https://doi.org/10.1371/journal.pone.0117202 (2015).

Peer-reviewed conference proceeding:

 Todd, L., Chin, M. & Coppens, M.-O. A Computational Pipeline to Optimize 3D Scaffolds for Cancer Immunotherapy in Computer Aided Chemical Engineering (eds Kokossis, A. C., Georgiadis, M. C. & Pistikopoulos, E.) 52 (Elsevier, 2023), 2705–2710. https://doi.org/10.1016/B978-0-443-15274-0.50430-3.

Other conference proceedings:

- 1. **Chin, M. H. W.**, Reid, B., Lachina, V., Acton, S. E. & Coppens, M.-O. Algorithmic Design of Lymph Node-Inspired 3D Microprinted Cell Scaffolds. AIChE Annual Meeting (2023).
- 2. **Chin, M. H. W.**, Gentleman, E., Coppens, M.-O. & Day, R. M. Biophysical fine-tuning of immune cell behaviour by using a biomaterial-based culture platform. European Biophysics Journal With Biophysics Letters 46, S244-S244 (2017).

Book chapter:

1. Sofokleous, P., Chin, M. H. W. & Day, R. M. Phase-separation technologies for 3D scaffold engineering in Functional 3D Tissue Engineering Scaffolds (eds Deng, Y. & Kuiper, J.) (Woodhead Publishing, 2018), 101–126. isbn: 978-0-08-100979-6. https://doi.org/10.1016/B978-0-08-100979-6.00005-7.

Software/codes:

1. 3D Cell Scaffold Generator (3D CSG). Open source license: GPL-3.0. Available at GitHub: https://github.com/mattychin/3D-cell-scaffold-generator. A Grasshopper algorithm for generating 3D printable scaffolds with small-world network properties.

PRESENTATIONS

- 1. **Chin, M. H. W.**, Vimeux, L., Guilbert, T., Benhammou, I., Lachina, V., Yadav, S., Reid, B., Straathof, K., Acton, S., Donnadieu, E. & Coppens, M.-O. Extracellular Matrix-Inspired 3D Microprinted Tumor Microenvironment Models. AIChE Annual Meeting, 2024, San Diego, US; Oral presentation.
- 2. **Chin, M. H. W.**, Vimeux, L., Guilbert, T., Donnadieu, E. & Coppens, M.-O. Bioinspired 3D Microprinted Tumour Microenvironment Models. BioMedEng24, 2024, London, UK; Oral presentation.
- 3. Chin, M. H. W., Reid, B., Lachina, V., Acton, S. E. & Coppens, M.-O. Algorithmic Design of Lymph Node-Inspired 3D Microprinted Cell Scaffolds. AIChE Annual Meeting, 2023, Orlando, FL, USA; Oral presentation.
- 4. **Chin, M. H. W.**, Reid, B., Lachina, V., Acton, S. E. & Coppens, M.-O. An Algorithmic Design Approach to Generate Lymph Node-Inspired 3D Microprinted Cell Scaffolds. TERMIS-AP, 2023, Hong Kong; Poster presentation.
- 5. **Chin, M. H. W.**, Reid, B., Lachina, V., Acton, S. E. & Coppens, M.-O. Designing nature-inspired scaffolds to model 3D biophysical T cell dynamics for cancer immunotherapy. Cancer Grand Challenges: Future Leaders Conference, 2022, Barcelona, Spain; Poster presentation.
- 6. **Chin, M. H. W.**, Gentleman, E., Coppens, M.-O. & Day, R. M. Transforming Immunotherapy with Nature-Inspired Engineering. AIChE Annual Meeting, 2018, Pittsburgh, PA, USA; Oral presentation.
- 7. TERMIS World Congress, 2018, Kyoto, Japan; Poster presentation.
- 8. **Chin, M. H. W.**, Gentleman, E., Coppens, M.-O. & Day, R. M. Biophysical fine-tuning of immune cell behaviour by using a biomaterial-based culture platform. 19th IUPAB and 11th EBSA Congress, 2017, Edinburgh, UK; Poster presentation.
- 9. **Chin, M. H. W.**, Gentleman, E., Coppens, M.-O. & Day, R. M. A hydrogel-based platform for the *ex vivo* activation and expansion of T cells. TERMIS-EU, 2017, Davos, Switzerland; Poster presentation.
- 10. A biomaterial-based platform for the optimisation of therapeutic immune cell culture. ChemEngDayUK, 2017, Birmingham, UK; Oral + poster presentations.
- 11. Bower, I., Chi, W., Chin, M. H. W., Fan, S., Kopniczky, M., Pilcher, J. & Strutt, J. Project Plasticity. iGEM World Championship, 2013, Massachusetts Institute of Technology, Cambridge, MA, USA; Oral + poster presentations.
- 12. Bower, I., Chi, W., Chin, M. H. W., Fan, S., Kopniczky, M., Pilcher, J. & Strutt, J. Project Plasticity. iGEM European Final, 2013, INSA Lyon, Lyon, France; Poster presentation.

Fellowships / Research grants

- 1. Marie Skłodowska-Curie Actions Global Fellowship (European Commission). Project: *Designing Vascular Geometries in 3D Bioprinted Models for Immuno-oncology (VASPRINT)*. Host institutions: Harvard University (2 years), UCL (1 year). Total award: EUR 430,343.40 (2025).
- 2. UCL CNIE Inspiration Grant. Project: *The immune "mind": bioelectrical and structural networks in decision-making*. Principal investigator: myself, collaborator: Dr. Sophie Acton (Laboratory of Molecular Cell Biology, UCL). Total award: GBP 20.4k for 9 months (2021).
- 3. UCL small project grant (Vinson & Cissy Chu Charitable Foundation). Project: *Investigating how 3D printed microenvironments influence immune decision-making*. GBP 25k for 6 months (2020).
- 4. UCL Grand Challenges Doctoral Students' Small Grants Scheme (category: Transformative Technology). Project: *Transforming Immunotherapy with Nature-Inspired Engineering*. Total award: GBP 2k for 12 months (2017).

Travel grants

- 1. DMM Conference Travel Grant, The Company of Biologists, GBP 600 (2024).
- 2. International Travel Award, IET, GBP 1500 (2024).
- 3. Andrew Carnegie Research Fund, IOM3, GBP 250 (2017).
- 4. Research Student Conference Fund, IOP, GBP 200 (2017).
- 5. Young Scientist Travel Award, IUPAB, EUR 300 (2017).
- 6. Travel Bursary, Wellcome Trust and British Biophysical Society, GBP 500 (2017).
- 7. School of Life and Medical Sciences Graduate Conference Fund, UCL, GBP 876.74 (2017).

CO-SUPERVISION AND MENTORING

- 1. Treena Villanueva, MEng dissertation (2025).
- 2. Nur Qaliesya Afzainizam, MEng dissertation (2025).
- 3. Lucy Todd, PhD thesis (2021-2024).
- 4. Yecheng (Max) Zhang, MEng dissertation (2024).
- 5. Klara Burdova, MEng student assisting with research on a volunteering basis (2024).
- 6. Julia Linke, PhD thesis (2021).

PUBLIC ENGAGEMENT / OUTREACH

- 1. Showcased research to alumni, UCL Chemical Engineering Centenary Alumni Event (2024).
- 2. Presenter Showcased research to secondary school (Year 12) students (2024).
- 3. Mentor In2Research, a placement program aiming to improve access to postgraduate research degrees and careers for people from low socioeconomic backgrounds (2022-2024).
- 4. Presenter "Shaping a Sustainable Future: Transformative Technology" public event at UCL (2023).

ACADEMIC SERVICE / OTHER ACTIVITIES

- 1. Workshop Co-Organizer (2024) Co-organized a workshop with University of Oxford DPhil students (Engineering Science) to exchange research ideas and explore collaborative opportunities with UCL Centre for Nature Inspired Engineering. News about the event: https://eng.ox.ac.uk/news/tackling-grand-challenges-with-nature-inspired-chemical-engineering-interdisciplinary-collaboration/
- 2. Invited Reviewer (2023) Advanced Science (Wiley).
- 3. Ambassador of Automorph Network (06/2023-Present) a collaboration between scientists and designers, working together on the concept of self-shaping matter (https://www.automorphnet.com/ambassadors).
- 4. Early Career Researcher Board Member, UCL Institute of Healthcare Engineering (09/2018 01/2019).
- 5. Member Royal Society of Biology; Institute of Materials, Minerals and Mining; Institution of Engineering and Technology; Institute of Physics; Tissue Engineering and Regenerative Medicine International Society; UK Society for Biomaterials; American Institute of Chemical Engineers (PostDoc).